Shadow Separation of Pavement Images Based on Morphological Component Analysis
نویسندگان
چکیده
منابع مشابه
Analysis of Blind Separation of Noisy Mixed Images Based on Wavelet Thresholding and Independent Component Analysis
This paper investigates the technique of wavelet threshold de-noising with Independent Component Analysis (ICA) for noisy image separation. In the first approach, noisy mixed images are separated using fast ICA algorithm and then wavelet thresholding is used to de-noise. The second approach uses wavelet threshold to de-noise and then use the fast ICA algorithm to separate the de-noised images. ...
متن کاملFace hallucination based on morphological component analysis
In this paper, we formulate the face hallucination as an image decomposition problem, and propose a Morphological Component Analysis (MCA) based method for hallucinating a single face image. A novel three-step framework is presented for the proposed method. Firstly, a low-resolution input image is up-sampled via an interpolation. Then, the interpolated image is decomposed into a global high-res...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملSignal Separation Using Re-weighted and Adaptive Morphological Component Analysis
Morphological component analysis (MCA) for signal separation decomposes a signal into a superposition of morphological subcomponents, each of which is approximately sparse in a certain dictionary. Some of the dictionaries can also be modified to make them adaptive to local structure in images. We show that signal separation performance can be improved over the previous MCA approaches by replaci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Control Science and Engineering
سال: 2021
ISSN: 1687-5257,1687-5249
DOI: 10.1155/2021/8828635